Theory of machinery

Chapter three

Velocity analysis

By

Laith Batarseh

Velocity analysis

Vector algebra

-If we assume that the dimension Θ is represented by a unit vector U_{θ}, then the derivative of the unit vector (\dot{U}_{θ}) can be found as:-

$$
\dot{U}_{\theta}=\frac{d U_{\theta}}{d t}=\lim _{\Delta t \rightarrow 0} \frac{U_{\theta+\Delta \theta}-U_{\theta}}{\Delta t}
$$

Assume a position vector $\mathbf{r}: \mathbf{r}=r U_{\theta}$
Take derivative with respect to time: $\dot{\mathbf{r}}=(r)(\omega) \dot{U}_{\theta}+\dot{r} U_{\theta}$
But $\dot{r}=0$ and so:

$$
\dot{\mathbf{r}}=(r)(\omega) \dot{U}_{\theta}
$$

Velocity analysis

4-BAR MECHANISM

LOOP CLOSURE EQUATION

$$
d_{2} U_{\theta 2}+d_{3} U_{\theta 3}=d_{1} U_{\theta 1}+d_{4} U_{\theta 4}
$$

Derivative

$$
d_{2} \omega_{2} \dot{U}_{\theta 2}+d_{3} \omega_{3} \dot{U_{\theta 3}}=d_{4} \omega_{4} \dot{U_{\theta 4}}
$$

Dot product both sides by $\mathbf{U}_{\theta 3}$ to eliminate $\boldsymbol{\omega}_{\mathbf{3}}$

$$
d_{2} \omega_{2} \sin \left(\theta_{3}-\theta_{2}\right)+0=d_{4} \omega_{4} \sin \left(\theta_{3}-\theta_{4}\right)
$$

Solve for $\omega_{4}:-\omega_{4}=\frac{d_{2} \omega_{2} \sin \left(\theta_{3}-\theta_{2}\right)}{d_{4} \sin \left(\theta_{3}-\theta_{4}\right)}$

Velocity analysis

SLIDER CRANK MECHANISM

LOOP CLOSURE EQUATION

$$
d_{2} U_{\theta 2}+d_{3} U_{\theta 3}+a U_{\alpha+90}=s U_{\alpha}
$$

Derivative

$$
d_{2} \omega_{2} \dot{U_{\theta 2}}+d_{3} \omega_{3} \dot{U_{\theta 3}}=\dot{S} U_{\alpha}
$$

Dot product both sides by \mathbf{U}_{63} to eliminate ω_{3}

$$
d_{2} \omega_{2} \sin \left(\theta_{3}-\theta_{2}\right)+0=\dot{S} \cos \left(\theta_{3}-\alpha\right)
$$

Solve for \dot{S} :- $\dot{S}=\frac{d_{2} \omega_{2} \sin \left(\theta_{3}-\theta_{2}\right)}{\cos \left(\theta_{3}-\alpha\right)}$

Velocity analysis

bodies has the same velocity. This point is called instant center of velocity
>a normal axis through this point represent an axis of rotation common to the two bodies

>In a mechanism with n links C (№ of instant centers) is found as

$$
C=\frac{n(n-1)}{2}
$$

Kennedy's rule : any three bodies have three instant centers of velocity that lie on the same straight line

